skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cabrera, Tomás"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract The dense environments in the cores of globular clusters (GCs) facilitate many strong dynamical encounters among stellar objects. These encounters have been shown to be capable of ejecting stars from the host GC, whereupon they become runaway stars, or hypervelocity stars (HVSs) if unbound to the galactic potential. We study high-speed stellar ejecta originating from GCs by using Monte CarloN-body models, in particular focusing on binary–single encounters involving compact objects. We pair our model-discriminated populations with observational catalogs of Milky Way GCs (MWGCs) to compose a present-day Galactic population of stellar ejecta. We find that these kinds of encounters can accelerate stars to velocities in excess of 2000 km s−1, to speeds beyond the previously predicted limits for ejecta from star-only encounters and in the same regime of Galactic center ejections. However, the same ejections can only account for 1.5%–20% of the total population of stellar runaways, and only 0.0001%–1% of HVS, with similar relative rates found for runaway white dwarfs. We also provide credible regions for ejecta from 149 MWGCs, which we hope will be useful as supplementary evidence when pairing runaway stars with origin GCs. 
    more » « less